Saikosaponin b1

Transformation of saikosaponin b1 to prosaikogenin A and saikogenin A by human intestinal bacteria

代謝実験

腸内細菌代謝 ヒト腸内細菌フローラ 単一化合物 saikosaponin b1

Fig. 1 Time course of metabolism of saikosaponin b1 (3) by a human fecal suspension.

Symbols: **3**, saikosaponin b1; **8**, prosaikogenin A; **12**, saikogenin A. [Kida *et al.*, *J. Trad. Med.*, **14**, 34-40 (1997)]

Preparation of a bacterial suspension of human feces

Fresh feces obtained from a healthy young man (age : 25, male) were suspended in five volumes of phosphate buffer (pH 7.2). The fecal suspension thus obtained was used in the following experiments. [Kida *et al.*, *J. Trad. Med.*, **14**, 34-40 (1997)]

Time course of the metabolism of saikosaponin b1 by an intestinal bacterial suspension: GAM broth (9 ml) containing saikosaponin b1 (a final concentration, 1 mM) was incubated with an intestinal bacterial suspension (1 ml) in an anaerobic incubator at 37°C. A 100 μ m portion was taken out at intervals (4, 10, 24 and 48 hours) and extracted with BuOH (100 μ l). Five micro liters of the BuOH layer were applied to a TLC plate, which was developed with solvent system A. [Kida *et al.*, *J. Trad. Med.*, 14, 34-40 (1997)]

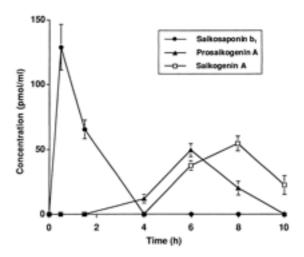


Fig. 2. Plasma concentration-time courses of saikosaponin b1 and its metabolites in conventional rats after the oral administration at a dose of 50 mg/kg.

Each point represents the mean \pm S.E. of three rats. [Kida *et al.*, *Biol. Pharm. Bull.*, **21**, 588-593 (1998)]

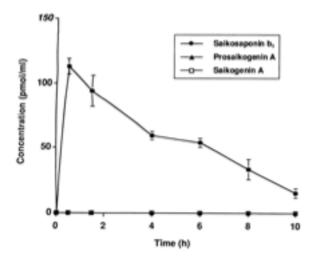


Fig. 3. Plasma concentration-time courses of saikosaponin b1 and its metabolites in germ-free rats after the oral administration at a dose of 50 mg/kg. Each point represents the mean \pm S.E. of three rats. [Kida *et al.*, *Biol. Pharm. Bull.*, **21**, 588-593 (1998)]

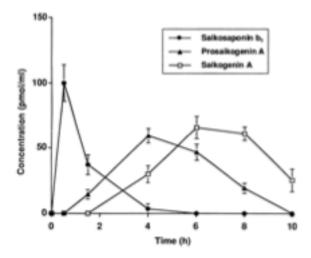


Fig. 4. Plasma concentration-time courses of saikosaponin b1 and its metabolites in gnotobiote rats after the oral administration at a dose of 50 mg/kg. Each point represents the mean \pm S.E. of three rats. [Kida *et al.*, *Biol. Pharm. Bull.*, **21**, 588-593 (1998)]

Table 1. Pharmacokinetic parameters after oral administration of saikosaponin b1 at a dose of 50 mg/kg to conventional, germ-free and gnotobiote rats.

Rats	C_{max}	t_{max}	AUC _{0-10h}
	(pmol/ml)	(min)	(pmol·min/ml)
Conventional rats			
1	129±17.7	30	12654
2	49.6±5.15	360	9936
3	54.7±5.69	480	12414
Germ-free rats			
1	113±6.07	30	34308
2	N.D.	N.D.	N.D.
3	N.D.	N.D.	N.D.
Gnotobiote rats			
1	100±14.0	30	8652
2	59.4±5.72	240	17424
3	65.6±8.72	360	22260

N.D.: not detected. **1**, saikosaponin b1; **2**, prosaikogenin A; **3**, saikogenin A [Kida *et al.*, *Biol. Pharm. Bull.*, **21**, 588-593 (1998)]

参考文献

- 1) Kida H., Nakamura N., Meselhy M. R., Akao T. and Hattori M.: Isolation and identification of human intestinal bacteria capable of hydrolyzing saikosaponins. *J. Trad. Med.*, **14**, 34-40 (1997).
- 2) Kida H., Akao T., Meselhy M. R. and Hattori M.: Enzymes responsible for the metabolism of saikosaponins from *Eubacterium* sp. A-44, a human intestinal anaerobe. *Biol. Pharm. Bull.*, **20**, 1274-1278 (1997).
- 3) Kida H., Akao T., Meselhy M. R. and Hattori M.: Metabolism and pharmacokinetics of orally administered saikosaponin b1 in conventional, germ-free

and *Eubacterium* sp. A-44 infected gnotobiote rats. *Biol. Pharm. Bull.*, **21**, 588-593 (1998).