Metabolic processes of shikonin (1) by human intestinal bacteria

1. 腸内細菌による代謝

Transformation of shikonin (1) with Bacteroides fragilis subsp. thetaotus

Stock cultures of *B. fragilis* (2 1) were added to GAM broth (18 1) and cultured overnight at 37 °C under anaerobic conditions. The bacterial culture was centrifuged at 7,800 x g for 10 min and the pellets were washed twice with saline and suspended in 0.1 M phosphate buffer (20 1, pH 7.3). A total of 20 g of shikonin (1, in 200 ml DMSO) was added to the bacterial suspension and the mixture was anaerobically incubated for 3 d at 37 °C. The mixture was pooled, adjusted to pH ca. 3.0 with 5% HCl, and extracted
with EtOAc (201 x 5). The EtOAc layer was washed with H₂O and evaporated in vacuo to give a dark brown residue (34 g). The residue was applied to a silica gel column (50 x 10 cm), which was then gradiently eluted with hexane, CHCl₃ and CHCl₃–MeOH (9:1), successively. Fractions (1500 ml each) were collected and monitored by TLC. Fraction A was concentrated and applied to a Kieselgel 60 (E. Merck) column. Elution with hexane: Me₂CO (9:1) gave three compounds 2, 3 and 4. Fraction B was subjected to column chromatography [Kieselgel 60, hexane–CHCl₃ (7:3 and 1:9)] and subsequent preparative-TLC (solvent system A) to afford compounds 5 and 6 as main yellow and orange powder, respectively, with minor compounds 9–11. Successive elution of the EtOAc extract with CHCl₃–MeOH (9:1) afforded a mixture of dark blue compounds in fraction C which could not be separated by HPLC. However, repeated column chromatography over Kieselgel 60 [hexane–CHCl₃ (1:9) and CHCl₃–MeOH (9:1)], preparative-TLC and subsequent Sephadex LH-20 [CHCl₃–MeOH (7:3)] column chromatography afforded two main dark blue compounds 7 and 8. [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)]

Compound 2 (Anhydroalkanin)

Red needles from CHCl₃, mp 134-135 °C, (2 mg, 0.01 %). UV \(\lambda_{\text{max}} \) (CHCl₃) nm (log \(\varepsilon \)): 290 (2.89), 500 (2.51). IR \(\nu_{\text{max}} \) (CHCl₃) cm⁻¹: 3450 (OH), 1620 (C=O), 1520 (C=C). EI-MS \(m/z \): 270 [M⁺]. \(^1\)H-NMR (CDCl₃) \(\delta \): 1.96 (3H, d, \(J = 1.5 \) Hz, 15-CH₃), 2.29 (3H, s, 16-CH₃), 6.09 (1H, dd, \(J = 11, 1.5 \) Hz, 13-H), 6.47 (1H, d, \(J = 15.5 \) Hz, 11-H), 7.21 (1H, s, 3-H), 7.26 (2H, s, 6-H and 7-H), 7.63 (1H, dd, \(J = 15.5, 11 \) Hz, 12-H), 12.78 (1H, s, 5- or 8-OH), 12.85 (1H, s, 8- or 5-OH). This compound was identified as anhydroalkannin by comparison of the spectral data with the published ones. [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)]

Compound 3 (Deoxyshikonin)

Red needles from CHCl₃, mp 93-94 °C, (10 mg, 0.05%). UV \(\lambda_{\text{max}} \) (CHCl₃) nm (log \(\varepsilon \)): 280 (2.79), 520 (2.59). IR \(\nu_{\text{max}} \) (CHCl₃) cm⁻¹: 3450 (OH), 1620 (C=O), 1520 (C=C). EI-MS \(m/z \): 272 [M⁺]. \(^1\)H-NMR (CDCl₃) \(\delta \): 1.60 (3H, s, 16-CH₃), 1.69 (3H, d, \(J = 1.5 \) Hz, 15-CH₃), 2.31 (2H, q, \(J = 7.3 \) Hz, 12-H), 2.63 (2H, t, \(J = 7.3 \) Hz, 11-H), 5.15 (1H, t, \(J = 7.3 \) Hz, 13-H), 6.85 (1H, s, 3-H), 7.21 (2H, s, 6-H and 7-H), 12.47 (1H, s, 5- or 8-OH), 12.63 (1H, s, 8- or 5-OH). \(^{13}\)C-NMR (CDCl₃) \(\delta \): 17.80 (q, C-15), 25.66 (q,
Compound 3 was identified by comparison of the 1H- and 13C-NMR spectra with those reported for deoxyshikonin. [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)]

Compound 4 (Cycloshikonin)

Red needles from hexane, mp 87-89 °C, (12.8 mg, 0.064%). CD (c = 3 mM, CHCl$_3$): $[\alpha]_{330}^205$. UV λ_{max} (CHCl$_3$) nm (log ε): 280 (4.50), 480 (3.74), 520 (3.62). IR ν_{max} (CHCl$_3$) cm$^{-1}$: 3350, 1610, 1265. EIMS m/z: 288 [M$^+$], 230 [M$^+$-C$_3$H$_6$], 219 [M$^+$-C$_5$H$_9$]. 1H-NMR (CDCl$_3$) δ: 1.35 (3H, d, $J = 1.0$ Hz, 15-CH$_3$ or 16-CH$_3$), 1.38 (3H, s, 16-CH$_3$ or 15-CH$_3$), 1.82 (1H, m, 13-H), 1.90 (1H, m, 13-H), 2.63 (1H, m, 12-H), 5.15 (1H, dd, $J = 7.5, 1.5$ Hz, 11-H), 7.18 (1H, d, $J = 9.0$ Hz, 6-H or 7-H), 7.21 (1H, d, $J = 9.0$ Hz, 7-H or 6-H), 7.21 (1H, d, $J = 1.5$ Hz, 3-H), 12.51 (1H, s, 5-OH or 8-OH), 12.53 (1H, s, 8-OH or 5-OH). 13C-NMR (CDCl$_3$) δ: 27.82 (q, C-15 or C-16), 32.70 (q, C-16 or C-15), 33.43 (t, C-13), 38.44 (t, C-12), 74.35 (d, C-11), 82.13 (s, C-14), 111.63 (s, C-9 or C-10), 112.10 (s, C-10 or C-9), 134.55 (d, C-6), 131.34 (d, C-7), 152.95 (s, C-2), 163.36 (s, C-5), 163.88 (s, C-8), 181.46 (s, C-1), 182.40 (s, C-4). This compound was identified as cycloshikonin by comparing the 1H- and 13C-NMR spectra with the reported data. [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)]

Compound 5 (Metaboshikonin I)

Unstable major metabolite obtained as fine yellow needles from CHCl$_3$, mp 146-148 °C, (152 mg, 0.76%). UV λ_{max} (CHCl$_3$) nm (log ε): 275 (2.96), 440 (2.88). IR ν_{max} (CHCl$_3$) cm$^{-1}$: 3450 (OH), 1520 (C=C). EIMS m/z: 272[M$^+$], 257 [M$^+$-CH$_3$], 229 [M$^+$-COCH$_3$] and 136. HRMS m/z: 272.1019 (Caied for C$_{16}$H$_{16}$O$_4$, 272.1047). 1H-NMR (CDCl$_3$) δ: 1.88 (3H, d, $J = 1.5$ Hz, 15-CH$_3$), 1.90 (3H, s, 16-CH$_3$), 3.03 (4H, t, $J = 3.0$ Hz, 2-H and 3-H), 6.09 (1H, dd, $J = 11.0, 1.5$ Hz, 13-H), 6.61 (1H, d, $J = 15.5$ Hz, 11-H), 7.19 (1H, dd, $J = 15.5, 11.0$ Hz, 12-H), 7.30 (1H, s, 6-H), 12.01 (1H, s, 5-OH), and 12.63 (1H, s, 8-OH). 13C-NMR spectral data: see Table II in the following literature: [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)].
Compound 6 (Metaboshikonin II)
Unstable major metabolite obtained as an amorphous powder (70 mg, 0.35%). UV \(\lambda_{\text{max}} \) (CHCl\(_3\)) nm (log \(\varepsilon \)): 240 (2.77), 265 (2.87), 440 (2.58). IR \(\nu_{\text{max}} \) (CHCl\(_3\)) cm\(^{-1}\): 3450 (OH), 1520 (C=C). EIMS \(m/z \): 21A [M\(^+\)], 256 [M\(^+\)–H\(_2\)O], 218 [M\(^+\)–CH=CH(CH\(_3\))\(_2\)], 206 and 96. HRMS \(m/z \): 274.1174 (Calcd for C\(_{16}\)H\(_{18}\)O\(_4\), 274.1214).
\(^1\)H- NMR (CDCl\(_3\)) \(\delta_{H} \): 1.51 (3H, d, \(J = 1.5 \) Hz, 15-'CH\(_3\)), 1.61 (3H, s, 16-'CH\(_3\)), 2.24 (2H, q, \(J = 7.5 \) Hz, 12-H), 2.63 (2H, t, \(J = 7.5 \) Hz, 11-H), 2.95 (4H, s, 2-H and 3-H), 5.09 (1H, dd, \(J = 7.5, 1.5 \) Hz, 13-H), 7.10 (1H, s, 6-H), 11.94 (1H, s, 5-OH), and 12.30 (1H, s, 8-OH). \(^{13}\)C-NMR spectral data: see Table II in the following literature: [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)].

Compound 7 (Shikometabolin A)
Obtained as dark violet needles from hexane-acetone, mp > 300 °C, (200 mg, 1.0%). CD (\(c \) = 0.67 mM, MeOH): \([\theta]_{234} -4200, [\theta]_{276} +1800, [\theta]_{304} -1800\). UV \(\lambda_{\text{max}} \) (MeOH) nm (log \(\varepsilon \)): 280 (2.97), 420 (2.52), 575 (2.78). IR \(\nu_{\text{max}} \) (KBr) cm\(^{-1}\): 3350 (OH), 1620 (C=O), 1460 (C=C). Negative ion FAB-MS \(m/z \): 555 [M–H], 457 [(M–H)–C\(_6\)H\(_4\)O], 268 [M–(partial structure I – H\(_2\)O)], 193 [M–(partial structure II + 2H)], 137, 93. HR-FAB-MS \(m/z \): 555.1650 [M–H]– (Calcd for C\(_{32}\)H\(_{27}\)O\(_9\): 555.1658). \(^1\)H-NMR (DMSO-\(d_6\)) \(\delta_{H} \): 1.56 (3H, d, \(J = 2.0 \) Hz, 15-'CH\(_3\)), 1.64 (3H, s, 16-'CH\(_3\)), 1.67 (3H, s, 16-'CH\(_3\)), 1.84 (3H, d, \(J = 2.0 \) Hz, 15'-CH\(_3\)), 2.25 (1H, dt, \(J = 12.0, 7.0 \) Hz, 12-Hp), 2.54 (1H, dd, \(J = 12.0, 3.5 \) Hz, 12-Ha), 4.15 (2H, d, \(J = 7.0 \) Hz, 12’-H), 4.95 (1H, m, 11-H), 5.16 (1H, s, 11-OH), 5.26 (1H, dd, \(J = 7.0, 2.0 \) Hz, 13’-H), 5.29 (1H, dd, \(J = 7.0, 2.0 \) Hz, 13-H), 6.98 (1H, d, \(J = 9.0 \) Hz, 6’-H), 7.03 (1H, d, \(J = 9.0 \) Hz, 7’-H), 7.21 (1H, s, 3-H), 13.54 (1H, s, 5’-OH), 13.77 (1H, s, 8’-OH), 13.79 (1H, s, 4-OH), 14.21 (1H, s, 1-OH). \(^{13}\)C-NMR spectral data: see Table II in the following literature: [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)].

Compound 8 (Shikometabolin B)
Obtained as dark violet radiating plates from hexane-acetone (170 mg, 0.85 %). CD (\(c \) = 0.67 mM, MeOH): \([\theta]_{218} +15600, [\theta]_{234} +11400, [\theta]_{270} -3000, [\theta]_{302} -3000\). UV \(\lambda_{\text{max}} \) (MeOH) nm (log \(\varepsilon \)): 280 (2.97), 420 (2.52), 575 (2.78). IR \(\nu_{\text{max}} \) (KBr) cm\(^{-1}\): 3350 (OH), 1620 (C=O), 1460 (C=C). Negative ion FAB-MS \(m/z \): 555 [M–H]\(^-\). HR-FAB-MS \(m/z \):
555.1650 [M-H]⁻ (Calcd for C₃₂H₂₇O₈: 555.1658). ¹H-NMR (DMSO-d₆) δH: 1.55 (3H, d, J = 1.5 Hz, 15'-CH₃), 1.63 (3H, d, J = 1.5 Hz, 15'-'CH₃), 1.68 (3H, s, 16-CH₃), 1.82 (3H, s, 16'-CH₃), 2.20 (1H, dt, J = 13.0, 7.0 Hz, 12-Hp), 2.50 (1H, m, 12-Ha), 4.14 (2H, d, J = 7.0 Hz, 12'-H), 4.91 (1H, m, 11-H), 5.25 (1H, dd, J = 7.0, 1.5 Hz, 13'-H), 5.29 (1H, dd, J = 1.0, 1.5 Hz, 13-H), 7.06 (1H, d, J = 9.0 Hz, 7'-H), 7.09 (1H, d, J = 9.0 Hz, 6'-H), 7.17 (1H, s, 3-H), 13.76 (2H, s, 4-OH and 5'-OH), 13.80 (1H, s, 8'-OH), 14.34 (1H, s, 1'-OH). ¹³C-NMR spectral data: see Table II in the following literature: [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)].

Compound 9 (Shikometabolin C)

Red needles from CHCl₃, mp 256-258 °C, (18 mg, 0.09 %). CD (c = 3.71 mM, MeOH): [0]₄₃₉ −295, [0]₂₈₆ +269, [0]₅₂₀ −269. UV λₘₐₓ (CHCl₃) nm (log ε): 250 (3.20), 410 (2.73), 520 (2.66), 555 (2.43). IR νₚₚₜₚₜ (CHCl₃) cm⁻¹: 3450 (OH), 1620 (C=O), 1520 (C=C). EI-MS m/z: 540 [M⁺], 471 [M⁺–C₅H₆], 458 [M⁺–C₆H₅], 403, 270, 149 and 69. HRMS m/z: 540.1809 (Calcd for C₃₂H₃₂O₈, 540.1784). ¹H-NMR (CDCl₃) δH: 1.19 (3H, d, J = 1.5 Hz, 15'-CH₃), 1.31 (3H, d, J = 1.0 Hz, 16'-CH₃), 1.58 (3H, d, J = 1.5 Hz, 15-CH₃), 1.73 (3H, d, J = 1.0 Hz, 16-CH₃), 2.68 (1H, ddd, J = 20.0, 5.5, 1.0 Hz, 11'-Hβ), 2.88 (1H, dd, J = 20.0, 1.5 Hz, 11'-Hα), 3.35 (1H, dd, J = 10.5, 5.5 Hz, 12'-H), 4.73 (1H, ddt, J = 10.5, 1.5, 1.0 Hz, 13'-H), 4.94 (1H, d, J = 1.0 Hz, 3-H), 5.84 (1H, ddt, J = 10.5, 1.5, 1.0 Hz, 13-H), 5.96 (1H, d, J = 15.5 Hz, 11-H), 6.12 (1H, dd, J = 15.5, 10.5 Hz, 12-H), 7.19 (1H, d, J = 9.0 Hz, 6-H), 7.24 (1H, d, J = 9.0 Hz, 6'-H), 7.26 (1H, d, J = 9.0 Hz, 7'-H), 7.30 (1H, d, J = 9.0 Hz, 7-H), 11.20 (1H, s, 5-OH), 12.30 (1H, s, 8'-OH), 12.50 (2H, s, 8-OH and 5'-OH). ¹³C-NMR spectral data: see Table II in the following literature: [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)].

Compound 10 (Shikometabolin D)

Red amorphous powder (9 mg, 0.045 %). CD (c = 1 mM, MeOH): [0]₂₈₀ −252, [0]₅₀₀ −252. UV λₘₐₓ (CHCl₃) nm (log ε): 220 (2.92), 420 (2.57), 520 (2.47). IR νₚₚₚₚ (CHCl₃) cm⁻¹: 3450 (OH), 1620 (C=O), 1540 (C=C). EI-MS m/z: 538 [M⁺⁺], 457 [M⁺–C₅H₆], 403 [M⁺–C₆H₅O₃], 352, 199, 153, 137. HRMS m/z: 538.1613 (Calcd for C₃₂H₂₆O₈, 538.1626). ¹H-NMR (CDCl₃) δH: 1.56 (3H, d, J = 1.0 Hz, 16-CH₃), 1.61 (3H, d, J = 1.0 Hz, 16'-CH₃), 1.73 (3H, d, J = 2.0 Hz, 15'-CH₃), 1.83 (3H, d, J = 2.0 Hz, 15-CH₃), 2.68 (1H, dd, J = 3.0, 1.0 Hz, 3-H), 3.35 (1H, ddd, J = 7.5, 4.5, 3.0 Hz, 12'-H), 3.82 (1H, dd,
$J = 9.0, 4.5 \text{ Hz, 12-H}$, 3.88 (1H, td, $J = 4.5, 1.0 \text{ Hz, 11'-H}$), 4.38 (1H, ddd, $J = 9.0, 2.0, 1.0 \text{ Hz, 13-H}$), 4.63 (1H, ddd, $J = 7.5, 2.0, 1.0 \text{ Hz, 13'-H}$), 7.23 (1H, d, $J = 9.0 \text{ Hz, 6'-H}$), 7.25 (1H, d, $J = 9.0 \text{ Hz, 7-H}$), 7.29 (1H, d, $J = 9.0 \text{ Hz, 6-H}$), 7.30 (1H, d, $J = 9.0 \text{ Hz, 7'-H}$), 12.08 (1H, s, 8'-OH), 12.30 (1H, s, 8-OH), 12.38 (1H, s, 5-OH), 12.50 (1H, s, 5'-OH). 13C-NMR spectral data: see Table II in the following literature: [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)].

Compound 11 (Shikometabolin E)

Orange amorphous powder (4 mg, 0.02%). UV λ_{max} (CHCl$_3$) nm (log ε): 240 (2.50), 260 (2.62), 420 (2.40). IR ν_{max} (CHCl$_3$) cm$^{-1}$: 3450 (OH), 1610 (C=O), 1520 (C=C). EI-MS m/z: 544 [M$^+$], 271 [M$^+$ - C$_{16}$H$_{17}$O$_4$]. HRMS m/z: 544.1211 (Calcd for C$_{32}$H$_{32}$O$_8$, 544.1263). 1H- NMR (CDCl$_3$) δ_H: 1.35 (6H, d, $J = 1.5 \text{ Hz, 15-CH}_3$ and 15'-CH$_3$), 1.75 (6H, s, 16-CH$_3$ and 16'-CH$_3$), 1.87 (2H, q, $J = 7.5 \text{ Hz, 12'-H}$), 2.77 (2H, t, $J = 7.5 \text{ Hz, 11'-H}$), 3.05 (8H, d, $J = 2.5 \text{ Hz, 2-H, 3-H, 2'-H and 3'-H}$), 4.37 (1H, dd, $J = 7.5, 1.5 \text{ Hz, 13'-H}$), 5.69 (1H, d, $J = 16.0 \text{ Hz, 11-H}$), 5.84 (1H, dd, $J = 16.0, 6.5 \text{ Hz, 12-H}$), 7.13 (1H, d, $J = 6.5 \text{ Hz, 13-H}$), 11.99 (1H, s, 5'-OH), 12.00 (1H, s, 5-OH), 12.38 (1H, s, 8'-OH), and 12.40 (1H, s, 8-OH). 13C-NMR spectral data: see Table II in the following literature: [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)].

![Fig. 1](image1.png)

Fig. 1 Time course of the metabolism of shikonin (1) by *Bacteroides fragillis* subsp. *thetaotus*

Shikonin (1, 5 mg each) was incubated with a precultured bacterial suspension of *B. fragillis* (10 ml each) for 3 days under anaerobic conditions. The incubation mixtures were taken at 12 h intervals, adjusted to pH *ca. 3* and extracted with EtOAc (10 ml x 3).
The EtOAc extract was evaporated in vacuo to give a residue. The residue was dissolved in MeOH (1 ml) and analyzed by HPLC. [Meselhy et al., Tetrahedron, 50, 3081-3098 (1994)]

2. ヒト腸内細菌酵素による代謝

Crude enzyme preparation and transformation of shikonin (1)

Eubacterium sp. A-44 has been previously isolated from human feces, and was maintained in GAM broth medium. Twenty ml of the culture were transferred to 10 volumes of the medium and incubated for 18 hr in an anaerobic incubator. The bacterial cells were harvested by centrifugation at 1500 × g for 10 min, and the pellets were suspended in 50 mM K-phosphate buffer (pH 7.3, 90 ml). The bacterial cells were disrupted by sonication (60 sec × 2), and part of the sonicated bacterial suspension (30 ml) was further centrifuged at 22500 × g for 30 min to obtain a bacterial cell-free extract, supernatant, which was kept on ice and used as the crude enzyme preparation. Ultracentrifugation of the supernatant (6 ml) at 3000 × g (for 45, 15 and 15 min) was carried out using Centriprep-10.
Shikonin (1, 50 mg in 1 ml DMSO) was added to the sonicated bacterial suspension (60 ml) and the reaction mixture was incubated in an anaerobic incubator for 2 hr. After acidification with 1 N HCl (pH 5.0), the reaction mixture was extracted with EtOAc (200 ml × 5). The EtOAc layer was washed with H₂O, dried over MgSO₄ and then evaporated in vacuo to give a residue. The residue was applied to a column of silica gel. Elution was started with hexane-Me₂CO (9: 17: 3) and then CHCl₃ with increasing % of MeOH to give 46 fractions. Fr. 2-8 afforded 3 (6 mg) and 4 (4 mg), 2 (18 mg) was obtained from Fr. 17-21, while 5 (4 mg) and 6 (4 mg) were from Fr. 42-46. [Meselhy et al., J. Trad. Med., 18, 58-63 (2001)]

Metabolite 2 (Premetaboshikonin)
Orange needles from hexane, mp. 120-123 °C. EI-MS m/z (rel. int.): 290 [M]+ (20), 222 (100), 192 (75), 175 (25), 137 (30), 91 (15) and 69 (15). ¹H-NMR (CDCl₃) δ: 1.64 and 1.75 (3H each, 2 x CH₃), 2.39 (1H, m, H₆-12), 2.41 (1H, br s, 11-OH), 2.62 (1H, m, H₁₂), 3.05 (4H, s, H₂-6 and H₂-7), 5.01 (1H, m, H-11), 5.17 (1H, dd, J = 5.4 and 1.1 Hz, H-13), 7.43 (1H, s, H-3), 11.99 and 12.45 (1H each, s, 1-OH and 4-OH). ¹³C-NMR (CDCl₃) δ: 18.3 (q, C-15), 26.2 (q, C-16), 36.4 (t, C-6 and C-7), 69.2 (d, C-11), 116.9 (s, C-10), 117.3 (s, C-9), 119.1 (d, C-13), 125.2 (d, C-3), 136.8 (s, C-14), 144.7 (s, C-2), 152.5 (s, C-4), 155.3 (s, C-1), 200.9 and 201.9 (s, C-5 and C-8). [Meselhy et al., J. Trad. Med., 18, 58-63 (2001)]

参考文献