Paoniflorin

Metabolic processes of paoniflorin by human intestinal bacteria

代謝実験
腸内細菌代謝 ヒト腸内細菌フローラ、Lactobacillus brevis, Bacteroides fragilis ss. Thetaotus
動物代謝 ラット
単一化合物 paoniflorin
Metabolism of 1 by *Lactobacillus brevis*

A precultured bacterial suspension (500 ml) of *L. brevis* was added to GAM broth (4.5 l) and cultivated for 12 h at 37 °C under anaerobic conditions. The culture was centrifuged at 7000 rpm for 10 min. The precipitates were washed with saline solution, centrifuged, and suspended in 0.1 M phosphate buffer (625 ml). The suspension was transferred into five tubes. Compound 1 (600 mg/10 ml in the same buffer) was then added portion wise into each tube and was anaerobically incubated for 4 h at 37 °C. The mixture was extracted three times with ethyl acetate (AcOEt, 200 ml each) and the organic layer was concentrated in vacuo to give an oily residue. The combined residues (0.3 g) were applied to a column of silica gel (40 g, 19 x 240 mm). The column was thoroughly washed with benzene and eluted with benzene–CHCl₃ (1:1). Fractions (50 ml each) were collected and monitored by silica gel TLC and ¹H-NMR spectroscopy.

Fractions 1—5 afforded a colorless oil, (7S-paeonimetabolin I, 2, 26 mg, 11%) and fractions 11—15 yielded a crystalline compound (23 mg, 9.6%), which gave pure crystals from hexane–CHCl₃ (9:1) (3, 11 mg) on recrystallization. Fractions 6—10 gave a mixture of 2 and 3 (21 mg, 8.8%). [Shu et al., *Chem. Pharm. Bull.*, 35, 3726-3733 (1987)]
7S-Paeonimetabololin I (2)
The physical properties were reported in the literature: [Hattori et al., Chem. Pharm. Bull., 33, 3838-3846 (1985)].

7R-Paeonimetabololin I (3)
Colorless prisms, mp 146-148 °C. High resolution MS: Found, 198.0853; Calcd for M+; C10H14O4, 198.0892. IR \(\nu_{\text{max}} \) cm\(^{-1}\): 3420 (OH), 1705 (C=O). \(^1\)H-NMR (CDCl\(_3\), 400 MHz) \(\delta \): 0.90 (3H, d, \(J=7.3 \) Hz, 8-H\(_3\)), 1.29 (3H, s, 10-H\(_3\)), 2.07 (1H, dq, \(J=7.5, 7.3 \) Hz, 7-H), 2.15 and 2.35 (each 1H, dd, \(J=13.4, 2.3 \) Hz; \(J=13.4, 3.4 \) Hz, 5-H\(_2\)), 2.60 and 2.64 (2H, ABq, \(J=17.7 \) Hz, 2-H\(_2\)), 2.65 (1H, m, 4-H), 5.14 (1H, brs, 9-H). MS m/z: 198 (M+), 180 (M+ –H\(_2\)O), 152, 124, 109, 98, 83, 69 (base peak), 55. \(^{13}\)C-NMR: see Table I in the literature: [Shu et al., Chem. Pharm. Bull., 35, 3726-3733 (1987)].

Metabolism of 1 by Bacteroides fragilis ss. thetaotus
Compound 1 (2.1 g) was incubated with B. fragilis ss. thetaotus under conditions similar to those described above. After extraction with AcOEt, the organic layer was evaporated in vacuo to give an oily residue (0.9 g). The residue was chromatographed on silica gel (80 g; column size, 19 x 350 mm). The column was washed with benzene and eluted with benzene–CHCl\(_3\) (1:1). Fractions were collected (60 ml/flask). Fractions 32—41, 42–49 and 50—61 afforded 2 (colorless oil, 105 mg, 12.6%), a mixture of 2 and 3 (oil, 103 mg, 12.3%) and 3 (prisms, 52 mg, 6.2%), respectively. Another oily substance (8 mg, 0.9%) was obtained from a CHCl\(_3\) eluate; this was identical with paeonimetabololin II (4). [Shu et al., Chem. Pharm. Bull., 35, 3726-3733 (1987)]

Paeonimetabololine II (4)
Epimeric mixture consisting of 4a (33%) and 4b (67%). The following assignments of \(^1\)H-NMR signals (CDCl\(_3\), 400 MHz) were made on the basis of the peak intensities of paired signals. 4a: \(\delta \) 1.12 (3H, d, \(J=6.4 \) Hz, 8-H\(_3\)), 1.36 (3H, s, 10-H\(_3\)), 2.02 (1H, ddq, \(J=14.5, 8.0, 6.5 \) Hz, 7-H), 2.25 and 2.29 (2H, ABq, \(J=12.8 \) Hz, 2-H\(_2\)), ca. 2.27 (1H, m, overlapped, 4-H), 2.41 and 2.85 (each 1H, d and dd, \(J=14.5 \) Hz; \(J=14.5, 7.4 \) Hz, 5-H\(_2\)), 3.65 and 4.05 (each 1H, dd, \(J=16.8, 7.8 \) Hz; \(J=16.8, 8.0 \) Hz, 9-H\(_2\)). 4b: \(\delta \) 1.13 (3H, d, \(J=6.4 \) Hz, 8-H\(_3\)), 1.33 (3H, s, 10-H\(_3\)), 2.15 (1H, m, 7-H), 2.32 and 2.38 (2H, ABq, \(J=...
13.2 Hz, 2-H$_2$), ca. 2.38 (1H, m, overlapped, 4-H), 2.37 and 2.72 (each 1H, d and dd, \(J=14.0\) Hz; \(J=14.0, 7.0\) Hz, 5-H$_2$), 3.67 and 4.08 (each 1H, dd, \(J=16.8, 9.2\) Hz; \(J=16.8, 8.7\) Hz, 9-H$_2$). [Shu et al., Chem. Pharm. Bull., 35, 3726-3733 (1987)]

Fig. 2. Plasma concentration–time curves of paeonimetabolin I (●) and paeoniflorin (▲) after oral administration of paeoniflorin at a dose of 5 mg/kg to rats. Each value represents the mean ± S.E. of 3 rats. [Heikal et al., Biol. Pharm. Bull., 20, 517-521 (1997)]
Fig. 3. Plasma concentration–time curves of paeonimetabolin I after intravenous administration of paeonimetabolin I at doses of 0.2 (■) and 2 (●) mg/kg to rats. Each value represents the mean ± S.E. of 4 rats. [Heikal et al., Biol. Pharm. Bull., 20, 517-521 (1997)]

Table 1. Pharmacokinetic parameters of paeoniflorin and paeonimetabolin I (PM-I) after 0.5 and 5 mg/kg oral administration of paeoniflorin to rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PF 0.5 mg/kg</th>
<th>PF 5 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PF (■)</td>
<td>PM-1 (●)</td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>9.9±2.2</td>
<td>16.5±2.64</td>
</tr>
<tr>
<td>t_{max} (min)</td>
<td>11.6±1.7</td>
<td>60±0.0</td>
</tr>
<tr>
<td>AUC_{0-180} (ng·min/ml)</td>
<td>300±79</td>
<td>1873±176.8</td>
</tr>
</tbody>
</table>

Fig. 4. Time courses of plasma levels of paeoniflorin (PF) and paeonimetabolin I (PM-I) in rats after oral administration of 100 and 500 mg prescriptions: Toki-Shakuyaku-San (TS) (A) and Shakuyaku-Kanzo-To (SK) (B).

TS, 当帰芍薬散; SK, 芍薬甘草湯; PF, paeoniflorin; PM-I, paeonimetabolin I.

Each point represents the mean ± S.E. of 4 rats. [Meselhy et al., Natural Med., 52, 265-268 (1998)]

Male Crj:CD Sprague-Dawley rats (7 weeks old, weighing ca. 220 g) obtained from Charles River (Japan) were fed standard laboratory chow. Forty four animals were fasted overnight with free access to water prior to drug administration. Prescriptions TS and SK were dissolved in distilled water, and doses of 100 and 500 mg/10 ml were orally given to the rats by gastric intubation. Four rats were randomly selected at time intervals, anesthetized, and all the blood was collected from the lower vena cava with a heparinized syringe. Blood samples were centrifuged at 1000 x g for 10 min, and the plasma was separated and kept at -20 °C until analysis. [Meselhy et al., Natural Med., 52, 265-268 (1998)]
Table 2. Pharmacokinetic parameters of PF and PM-I after p.o. administration of TS and SK at doses of 100 and 500 mg to rats.

<table>
<thead>
<tr>
<th>Prescription</th>
<th>(C_{\text{max}}) (ng/ml)</th>
<th>(t_{\text{max}}) (min)</th>
<th>(t_{1/2}) (min)</th>
<th>(AUC_{0-24h}) (ng·min/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS (100 mg)</td>
<td>PF 146.3</td>
<td>60</td>
<td>140.3</td>
<td>14305</td>
</tr>
<tr>
<td></td>
<td>PM-I 184.0</td>
<td>120</td>
<td>426.7</td>
<td>98497</td>
</tr>
<tr>
<td>(500 mg)</td>
<td>PF 165.1</td>
<td>45</td>
<td>970.0</td>
<td>19385</td>
</tr>
<tr>
<td></td>
<td>PM-I 400.3</td>
<td>180</td>
<td>569.1</td>
<td>182188</td>
</tr>
<tr>
<td>SK (100 mg)</td>
<td>PF 128.5</td>
<td>5</td>
<td>921.2</td>
<td>48857</td>
</tr>
<tr>
<td></td>
<td>PM-I 141.7</td>
<td>360</td>
<td>508.7</td>
<td>102136</td>
</tr>
<tr>
<td>(500 mg)</td>
<td>PF 153.5</td>
<td>5</td>
<td>69.1</td>
<td>32518</td>
</tr>
<tr>
<td></td>
<td>PM-I 726.5</td>
<td>480</td>
<td>325.8</td>
<td>469305</td>
</tr>
</tbody>
</table>

TS, 当帰芍薬散; SK, 芍薬甘草湯; PF, paeoniflorin; PM-I, paeonimetabolin I. [Meselhy et al., \emph{Natural Med.}, \textbf{52}, 265-268 (1998)]

参考文献

